Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Vet Res ; 53(1): 46, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35733156

RESUMO

A universal vaccine protecting against multiple serotypes of Streptococcus suis is urgently needed to improve animal welfare and reduce the consumption of antibiotics. In this study, a dual antigen expression cassette consisting of SS2-SaoA and SS9-Eno was delivered by a recombinant Salmonella Choleraesuis vector to form the vaccine candidate rSC0016(pS-SE). SaoA and Eno were simultaneously synthesized in rSC0016(pS-SE) without affecting the colonization of the recombinant vector in the lymphatic system. In addition, the antiserum of mice immunized with rSC0016(pS-SE) produced a broader and potent opsonophagocytic response against multiple serotypes of S. suis. Finally, rSC0016(pS-SE) provided mice with a 100% protection against a lethal dose of parent S. suis serotype 2 and serotype 9, and provided 90% and 80% protection against heterologous S. suis serotype 7 or 1/2. These values were significantly higher than those obtained with rSC0016(pS-SaoA) or rSC0016(pS-Eno). Together, this study serves as a foundation for developing a universal vaccine against multiple serotypes of S. suis.


Assuntos
Vacinas Bacterianas , Proteção Cruzada , Salmonella enterica , Infecções Estreptocócicas , Streptococcus suis , Animais , Vacinas Bacterianas/imunologia , Proteção Cruzada/imunologia , Modelos Animais de Doenças , Camundongos , Salmonella enterica/genética , Salmonella enterica/imunologia , Sorogrupo , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Streptococcus suis/genética , Streptococcus suis/imunologia
2.
Vet Res ; 52(1): 133, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666827

RESUMO

Streptococcus suis is an important swine pathogen responsible for economic losses to the swine industry worldwide. There is no effective commercial vaccine against S. suis. The use of autogenous ("bacterin") vaccines to control S. suis outbreaks is a frequent preventive measure in the field, although scientific data on immunogenicity and reduction in mortality and morbidity are scarce. The goal of our study is to experimentally evaluate the immunogenicity and protective efficacy against homologous challenge in weaned piglets of a S. suis serotype 2 bacterin-based vaccine formulated with six different commercial adjuvants (Alhydrogel®, Emulsigen®-D, Quil-A®, Montanide™ ISA 206 VG, Montanide™ ISA 61 VG, and Montanide™ ISA 201 VG). The vaccine formulated with Montanide™ ISA 61 VG induced a significant increase in anti-S. suis antibodies, including both IgG1 and IgG2 subclasses, protected against mortality and significantly reduced morbidity and severity of clinical signs. Vaccines formulated with Montanide ISA 206 VG or Montanide ISA 201 VG also induced a significant increase in anti-S. suis antibodies and showed partial protection and reduction of clinical signs severity. Vaccines formulated with Alhydrogel®, Emulsigen®-D, or Quil-A® induced a low and IgG1-shifted antibody response and failed to protect vaccinated piglets against a homologous challenge. In conclusion, the type of adjuvant used in the vaccine formulation significantly influenced the immune response and efficacy of the vaccine against a homologous challenge.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas Bacterianas/administração & dosagem , Infecções Estreptocócicas/veterinária , Streptococcus suis/imunologia , Doenças dos Suínos/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Vacinas Bacterianas/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Sus scrofa , Suínos , Doenças dos Suínos/microbiologia , Desmame
3.
PLoS One ; 16(10): e0258931, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34699547

RESUMO

Streptococcus suis (S. suis) serotype 2 infection is a problem in the swine industry and responsible for most cases of human infection worldwide. Since current multiplex PCR cannot differentiate between serotypes 2 and 1/2, then serotype-specific antibodies (Abs) are required for serotype identification to confirm infection by serotype 2. This study aimed to generate Abs specific to S. suis serotype 2 by phage display from a human heavy chain variable domain (VH) antibody library. For biopanning, whole cells of S. suis serotype 2 were used as the target antigen. With increasing selection stringency, we could select the VH Abs that specifically bound to a S. suis serotype 2 surface antigen, which was identified as the capsular polysaccharide (CPS). From ELISA analysis, the specific phage clone 47B3 VH with the highest binding activity to S. suis serotype 2 was selected and shown to have no cross-reactivity with S. suis serotypes 1/2, 1, and 14 that shared a common epitope with serotype 2 and occasionally cause infections in human. Moreover, no cross-reactivity with other bacteria that can be found in septic blood specimens was also observed. Then, 47B3 VH was successfully expressed as soluble 47B3 VH in E. coli TG1. The soluble 47B3 VH crude extract was further tested for its binding ability in a dose-dependent ELISA assay. The results indicated that the activity of phage clone 47B3 was still retained even when the Ab occurred in the soluble form. A quellung reaction demonstrated that the soluble 47B3 VH Ab could show bioactivity by differentiation between S. suis serotypes 2 and 1/2. Thus, it will be beneficial to use this VH Ab in the diagnosis of disease or discrimination of S. suis serotypes Furthermore, the results described here could motivate the use of phage display VH platform to produce serotyping antibodies.


Assuntos
Anticorpos , Bacteriófagos , Sorogrupo , Streptococcus suis/imunologia , Animais , Sorotipagem , Infecções Estreptocócicas/microbiologia , Suínos
4.
Vet Res ; 52(1): 112, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433500

RESUMO

A vaccine protecting against different Streptococcus suis serotypes is highly needed in porcine practice to improve animal welfare and reduce the use of antibiotics. We hypothesized that immunogens prominently recognized by convalescence sera but significantly less so by sera of susceptible piglets are putative protective antigens. Accordingly, we investigated immunogenicity and protective efficacy of a multicomponent vaccine including six main conserved immunogens, namely SSU0934, SSU1869, SSU0757, SSU1950, SSU1664 and SSU0187. Flow cytometry confirmed surface expression of all six immunogens in S. suis serotypes 2, 9 and 14. Although prime-booster vaccination after weaning resulted in significantly higher specific IgG levels against all six immunogens compared to the placebo-treated group, no significant differences between bacterial survival in blood from either vaccinated or control animals were recorded for serotype 2, 9 and 14 strains. Furthermore, vaccinated piglets were not protected against morbidity elicited through intranasal challenge with S. suis serotype 14. As ~50% of animals in both groups did not develop disease, we investigated putative other correlates of protection. Induction of reactive oxygen species (ROS) in blood granulocytes was not associated with vaccination but correlated with protection as all piglets with >5% ROS survived the challenge. Based on these findings we discuss that the main immunogens of S. suis might actually not be a priori good candidates for protective antigens. On the contrary, expression of immunogens that evoke antibodies that do not mediate killing of this pathogen might constitute an evolutionary advantage conserved in many different S. suis strains.


Assuntos
Imunogenicidade da Vacina , Infecções Estreptocócicas/veterinária , Vacinas Estreptocócicas/imunologia , Streptococcus suis/imunologia , Doenças dos Suínos/prevenção & controle , Animais , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/administração & dosagem , Sus scrofa , Suínos , Doenças dos Suínos/microbiologia , Resultado do Tratamento
5.
Vet Microbiol ; 260: 109164, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34247113

RESUMO

Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that poses a serious threat to human health and the swine industry. The survival and travel in the bloodstream are the important causes for SS2, contributing to bacteremia, septicemia even septic shock. However, the related mechanism remains largely unknown. Preliminary experiment demonstrated that SS2 could largely attach to the surface of neutrophils, implying that this phenomenon maybe contributed to the travel of SS2 in bloodstream and then influenced its pathogenicity. To confirm this hypothesis, using a previously established screening method that combines affinity chromatography (based on liquid chromatography-tandem mass spectrometry) with shotgun proteomics, three candidate proteins (HP0487, HP1765, and HP1111) were identified from SS2 that could interact with neutrophils. Next, by constructing the deletion mutations, we demonstrated that HP0487 of three proteins could significantly influence the adhesion of SS2 to neutrophils. Furthermore, HP0487 was shown to contribute to the anti-phagocytosis of SS2 to neutrophils and RAW264.7 cells. More importantly, the deletion of HP0487 significantly reduced lethality and bacterial loads in vivo of SS2. Thus, our findings demonstrate that HP0487 contributes to SS2 virulence by mediating the adhesion and anti-phagocytosis of SS2 to neutrophils, promoting a better understanding about the pathogenesis of SS2.


Assuntos
Infecções Estreptocócicas/veterinária , Streptococcus suis/patogenicidade , Doenças dos Suínos/microbiologia , Animais , Aderência Bacteriana , Camundongos , Neutrófilos/microbiologia , Fagocitose , Proteômica , Células RAW 264.7 , Sorogrupo , Infecções Estreptocócicas/microbiologia , Streptococcus suis/imunologia , Streptococcus suis/fisiologia , Suínos , Virulência
6.
Vet Microbiol ; 260: 109183, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34304027

RESUMO

Streptococcus suis serotype (cps) 1 and cps14 have been detected in association with severe diseases such as meningitis and polyarthritis in pigs. Though these two cps are very similar, only cps14 is an important zoonotic agent in Asia and only cps1 is described to be associated with diseases in suckling piglets rather than weaning piglets. The main objective of this study was to assess restriction of survival of cps14 and cps1 in porcine blood by IgG and IgM putatively cross-reacting with these two cps. Furthermore, we differentiate recent European cps1/14 strains by agglutination, cpsK sequencing, MLST and virulence-associated gene profiling. Our data confirmed cps1 of clonal complex 1 as an important pathotype causing polyarthritis in suckling piglets in Europe. The experimental design included also bactericidal assays with blood samples drawn at different ages of piglets naturally infected with different S. suis cps types including cps1 but not cps14. We report survival of a cps1 and a cps14 strain (both of sequence type 1) in blood of suckling piglets with high levels of maternal IgG binding to the bacterial surface. In contrast, killing of cps1 and cps14 was recorded in older piglets due to an increase of IgM as demonstrated by specific cleavage of IgM. Heterologous absorption of antibodies with cps1 or cps14 is sufficient to significantly increase the survival of the other cps. In conclusion, IgM elicited by natural S. suis infection is crucial for killing of S. suis cps1 and cps14 in older weaning piglets and has most likely the potential to cross-react between cps1 and cps14.


Assuntos
Anticorpos Antibacterianos/imunologia , Artrite/veterinária , Meningite/veterinária , Infecções Estreptocócicas/veterinária , Streptococcus suis/imunologia , Doenças dos Suínos/microbiologia , Animais , Artrite/microbiologia , Técnicas de Tipagem Bacteriana/veterinária , Reações Cruzadas , Meningite/microbiologia , Tipagem de Sequências Multilocus/veterinária , Sorogrupo , Infecções Estreptocócicas/microbiologia , Streptococcus suis/patogenicidade , Suínos , Virulência , Desmame
7.
Res Vet Sci ; 137: 201-207, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34020335

RESUMO

Streptococcus suis is an important zoonotic pathogen that leads to huge economic losses in the swine industry. Because of the enormous genetic and phenotypic diversity within S. suis, it is necessary to develop effective vaccines to control this zoonotic pathogen. SBP2' is a major pili subunit in S. suis that belongs to an srtBCD pili cluster and has already been reported to be associated with the pathogenesis of this bacterium. In this study, we aimed to evaluate the immunogenicity and protective ability of SBP2'. The rSBP2' protein was expressed by an Escherichia coli expression system and emulsified with Montanide ISA 201 adjuvant to prepare the subunit vaccine. Through active immune assays, the results showed that rSBP2' exhibited good immunogenicity and could protect mice from a lethal dose challenge. Additionally, the qRT-PCR data showed that the transcription levels of cytokines associated with systemic symptoms caused by S. suis were decreased, indicating that immunization with rSBP2' could protect the host from cytokine storms caused by S. suis. Furthermore, the passive immune assay showed that the humoral immunity induced by rSBP2' played an important role against S. suis infection. Taken together, SBP2' could provide proper immune protection against S. suis challenge and could be a candidate for S. suis subunit vaccine. The results of this study could provide new ideas for the development of effective vaccines against S. suis.


Assuntos
Fímbrias Bacterianas/imunologia , Imunogenicidade da Vacina , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus suis/imunologia , Animais , Escherichia coli/genética , Camundongos , Camundongos Endogâmicos ICR , Sorogrupo , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Vacinas Sintéticas/imunologia
8.
Sci Rep ; 11(1): 6513, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753801

RESUMO

The capsular polysaccharide (CPS) of Streptococcus suis defines various serotypes based on its composition and structure. Though serotype switching has been suggested to occur between S. suis strains, its impact on pathogenicity and virulence remains unknown. Herein, we experimentally generated S. suis serotype-switched mutants from a serotype 2 strain that express the serotype 3, 4, 7, 8, 9, or 14 CPS. The effects of serotype switching were then investigated with regards to classical properties conferred by presence of the serotype 2 CPS, including adhesion to/invasion of epithelial cells, resistance to phagocytosis by macrophages, killing by whole blood, dendritic cell-derived pro-inflammatory mediator production and virulence using mouse and porcine infection models. Results demonstrated that these properties on host cell interactions were differentially modulated depending on the switched serotypes, although some different mutations other than loci of CPS-related genes were found in each the serotype-switched mutant. Among the serotype-switched mutants, the mutant expressing the serotype 8 CPS was hyper-virulent, whereas mutants expressing the serotype 3 or 4 CPSs had reduced virulence. By contrast, switching to serotype 7, 9, or 14 CPSs had little to no effect. These findings suggest that serotype switching can drastically alter S. suis virulence and host cell interactions.


Assuntos
Cápsulas Bacterianas/imunologia , Interações Hospedeiro-Patógeno , Sorogrupo , Streptococcus suis/genética , Animais , Cápsulas Bacterianas/genética , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Feminino , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Streptococcus suis/imunologia , Streptococcus suis/patogenicidade , Virulência/genética
9.
BMC Vet Res ; 17(1): 72, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546699

RESUMO

BACKGROUND: Streptococcus suis is an important pathogen that causes severe diseases mostly in weaned piglets. Only available vaccines in the field are those composed of killed bacteria (bacterins) but data about their effectiveness are missing. We report here a field study on the immunological response induced by an autogenous vaccine applied in pre-parturient sows. Using a farm with recurrent S. suis serotype 7 problems, the study was divided in three experiments: (I) Sows received the vaccine at 7 and 3 weeks pre-farrowing. (II) Replacement gilts introduced to the herd received the vaccine at 4 and 7 weeks after their entry in quarantine and a boost 3 weeks pre-farrowing. (III) Gilts from experiment II received another boost 3 weeks pre-farrowing at their 3rd/4th parity. Levels, isotype profile and opsonophagocytosis capacity of the serum antibodies induced by vaccination were evaluated in sows and maternal immunity in piglets. RESULTS: In sows (I), the vaccine induced a slight, albeit significant, increase in anti-S. suis total antibodies after 2 doses when compare to basal levels already present in the animals. These antibodies showed a high opsonic capacity in vitro, highlighting their potential protective capacity. A gilt vaccination program of 3 doses (II) resulted in a significant increase in anti-S. suis total antibodies. Levels of maternal immunity transferred to piglets were high at 7 days of age, but rapidly decreased by 18 days of age. A gilt vaccination program ensued a higher transfer of maternal immunity in piglets compared to control animals; nevertheless duration was not improved at 18 day-old piglets. The vaccine response in both gilts and sows was mainly composed of IgG1 subclass, which was also the main Ig transferred to piglets. IgG2 subclass was also found in piglets, but its level was not increased by vaccination. Finally, a recall IgG1 response was induced by another boost vaccination at 3rd/4th parity (III), indicating that the vaccine induced the establishment of a lasting memory response in the herd. CONCLUSIONS: Overall, an optimal gilt/sow vaccination program might result in increased antibody responses; nevertheless duration of maternal immunity would not last long enough to protect post-weaned piglets.


Assuntos
Autovacinas/administração & dosagem , Infecções Estreptocócicas/veterinária , Streptococcus suis/imunologia , Doenças dos Suínos/prevenção & controle , Animais , Animais Recém-Nascidos , Anticorpos Antibacterianos/sangue , Feminino , Imunoglobulina G/sangue , Gravidez , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/prevenção & controle , Sus scrofa , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Vacinação/veterinária
10.
J Appl Microbiol ; 130(4): 1075-1083, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32996241

RESUMO

AIMS: RpoE is quite immunogenic and can be used as a candidate vaccine for Streptococcus suis infection via immunoproteomics as reported in our previous studies. In this study, we aimed to verify the immunogenicity of recombinant RpoE and its protective effect against of S. suis. METHODS AND RESULTS: The RpoE protein was successfully expressed in Escherichia coli, and the purified recombinant protein was mixed with ISA206 to prepare an S. suis subunit vaccine. Mice were immunized with the RpoE subunit vaccine and then infected with the virulent S. suis strain ZY05719. Subunit vaccine-immunized mice achieved 50% protection, less pathological damage and less bacterial distribution in each organ compared with the control mice. Furthermore, in vitro culture, showed that mouse antisera significantly (P ï¼œ 0·001) inhibited the growth of S. suis, and qRT-PCR results showed that RpoE successfully induced the up-regulation of IL-6 and TNF-α cytokines. CONCLUSIONS: RpoE mice were vaccinated to obtain immune protection, which may be candidates for S. suis subunit vaccine. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study will provide new ideas for the development of safe and effective recombinant subunits vaccines for S. suis.


Assuntos
Proteínas de Bactérias/imunologia , Fator sigma/imunologia , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus suis/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Imunização , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Sorogrupo , Fator sigma/genética , Fator sigma/metabolismo , Infecções Estreptocócicas/microbiologia , Vacinas Estreptocócicas/administração & dosagem , Streptococcus suis/genética , Vacinas de Subunidades/administração & dosagem , Vacinas de Subunidades/imunologia
11.
Infect Immun ; 88(11)2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32868342

RESUMO

Porcine circovirus type 2 (PCV2) and Streptococcus suis serotype 2 (SS2) clinical coinfection cases have been frequently detected. The respiratory epithelium plays a crucial role in host defense against a variety of inhaled pathogens. Reactive oxygen species (ROS) are involved in killing of bacteria and host immune response. The aim of this study is to assess whether PCV2 and SS2 coinfection in swine tracheal epithelial cells (STEC) affects ROS production and investigate the roles of ROS in bacterial survival and the inflammatory response. Compared to SS2 infection, PCV2/SS2 coinfection inhibited the activity of NADPH oxidase, resulting in lower ROS levels. Bacterial intracellular survival experiments showed that coinfection with PCV2 and SS2 enhanced SS2 survival in STEC. Pretreatment of STEC with N-acetylcysteine (NAC) also helps SS2 intracellular survival, indicating that PCV2/SS2 coinfection enhances the survival of SS2 in STEC through a decrease in ROS production. In addition, compared to SS2-infected STEC, PCV2/SS2 coinfection and pretreatment of STEC with NAC prior to SS2 infection both downregulated the expression of the inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1ß. Further research found that activation of p38/MAPK promoted the expression of inflammatory cytokines in SS2-infected STEC; however, PCV2/SS2 coinfection or NAC pretreatment of STEC inhibited p38 phosphorylation, suggesting that coinfection of STEC with PCV2 and SS2 weakens the inflammatory response to SS2 infection through reduced ROS production. Collectively, coinfection of STEC with PCV2 and SS2 enhances the intracellular survival of SS2 and weakens the inflammatory response through decreased ROS production, which might exacerbate SS2 infection in the host.


Assuntos
Infecções por Circoviridae/virologia , Coinfecção/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/microbiologia , Infecções Estreptocócicas/microbiologia , Doenças dos Suínos/microbiologia , Animais , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/metabolismo , Circovirus/imunologia , Circovirus/metabolismo , Coinfecção/imunologia , Coinfecção/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/metabolismo , Streptococcus suis/imunologia , Streptococcus suis/metabolismo , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Traqueia/imunologia , Traqueia/metabolismo , Traqueia/microbiologia
12.
Immunobiology ; 225(4): 151979, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32747024

RESUMO

Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent. Infections induce an exacerbated inflammation that can result in sudden death (septic shock) and meningitis. Though neutrophilic leukocytosis characterizes S. suis infection, the mediators involved are poorly understood. Among them, granulocyte-colony stimulating factor (G-CSF), a pro-inflammatory cytokine, triggers proliferation of neutrophil progenitors and neutrophil mobilization. However, the systemic production of G-CSF induced during S. suis infection, the cell types involved, and the underlying mechanisms remain unknown. In a S. suis serotype 2 mouse model of systemic infection, plasma levels of G-CSF rapidly increased after infection. S. suis activation of DCs and macrophages resulted in high (> 1000 pg/mL) and comparable production levels of G-CSF, as measured by ELISA. By using mutant strains deficient in capsular polysaccharide (CPS) or lipoprotein maturation in combination with purified lipoteichoic acid (LTA) from the latter mutant strain, it was showed that G-CSF production is mainly mediated by S. suis lipoproteins. The Toll-like receptor (TLR) pathway via myeloid differentiation primary response 88 (MyD88) is required for G-CSF production by DCs and macrophages following S. suis activation, with a partial involvement of TLR2. On the other hand, TLR2-independant G-CSF production induced by S. suis requires internalization and bacterial DNA might play a role in this pathway. Finally, these signals activated nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways leading to G-CSF production. In conclusion, this study demonstrated for the first time that S. suis induces G-CSF production in vivo and DCs and macrophages are key cellular sources of this cytokine mediator, mainly via the binding of lipoproteins to TLR2. The CPS significantly reduced this activation, confirming the powerful role of this component in S. suis virulence. As such, this study contributes to better understand how DCs and macrophages produce G-CSF in response to S. suis, and potentially to other streptococci.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fator Estimulador de Colônias de Granulócitos/biossíntese , Macrófagos/imunologia , Macrófagos/metabolismo , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus suis/imunologia , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos/sangue , Interações Hospedeiro-Patógeno , Camundongos , Transdução de Sinais , Streptococcus suis/classificação
13.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747605

RESUMO

Streptococcus suis is an encapsulated bacterium and one of the most important swine pathogens and a zoonotic agent for which no effective vaccine exists. Bacterial capsular polysaccharides (CPSs) are poorly immunogenic, but anti-CPS antibodies are essential to the host defense against encapsulated bacteria. In addition to the previously known serotypes 2 and 14, which are nonimmunogenic, we have recently purified and described the CPS structures for serotypes 1, 1/2, 3, 7, 8, and 9. Here, we aimed to elucidate how these new structurally diverse CPSs interact with the immune system to generate anti-CPS antibody responses. CPS-stimulated dendritic cells produced significant levels of C-C motif chemokine ligand 3 (CCL3), partially via Toll-like receptor 2 (TLR2)- and myeloid differentiation factor 88-dependent pathways, and CCL2, via TLR-independent mechanisms. Mice immunized with purified serotype 3 CPS adjuvanted with TiterMax Gold produced an opsonizing IgG response, whereas other CPSs or adjuvants were negative. Mice hyperimmunized with heat-killed S. suis serotypes 3 and 9 both produced anti-CPS type 1 IgGs, whereas serotypes 7 and 8 remained negative. Also, mice infected with sublethal doses of S. suis serotype 3 produced primary anti-CPS IgM and IgG responses, of which only IgM were boosted after a secondary infection. In contrast, mice sublethally infected with S. suis serotype 9 produced weak anti-CPS IgM and IgG responses following a secondary infection. This study provides important information on the divergent evolution of CPS serotypes with highly different structural and/or biochemical properties within S. suis and their interaction with the immune system.


Assuntos
Antígenos de Bactérias/imunologia , Cápsulas Bacterianas/imunologia , Imunoglobulina G/imunologia , Polissacarídeos Bacterianos/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus suis/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/química , Cápsulas Bacterianas/genética , Quimiocinas/imunologia , Células Dendríticas/imunologia , Imunização , Imunoglobulina M/imunologia , Camundongos , Fator 88 de Diferenciação Mieloide/imunologia , Polissacarídeos Bacterianos/administração & dosagem , Polissacarídeos Bacterianos/química , Sorogrupo , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Receptor 2 Toll-Like/imunologia
14.
Virulence ; 11(1): 825-838, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32614642

RESUMO

STREPTOCOCCUS SUIS: serotype 2 (SS2) is a serious zoonotic pathogen which causes symptoms of streptococcal toxic shock syndrome (STSS) and septicemia; these symptoms suggest that SS2 may have evade innate immunity. Phagocytosis is an important innate immunity process where phagocytosed pathogens are killed by lysosome enzymes, reactive oxygen, and nitrogen species, and acidic environments in macrophages following engulfment. A previously constructed mutant SS2 library was screened, revealing 13 mutant strains with decreased phagocytic resistance. Through inverse PCR, the transposon insertion sites were determined. Through bioinformatic analysis, the 13 disrupted genes were identified as Cps2F, 3 genes belonging to ABC transporters, WalR, TehB, rpiA, S-transferase encoding gene, prs, HsdM, GNAT family N-acetyltransferase encoding gene, proB, and upstream region of DnaK. Except for the capsular polysaccharide biosynthesis associated Cps2F, the other genes had not been linked to a role in anti-phagocytosis. The survival ability in macrophages and whole blood of randomly picked mutant strains were significantly impaired compared with wild-type ZY05719. The virulence of the mutant strains was also attenuated in a mouse infection model. In the WalR mutant, the transcription of HP1065 decreased significantly compared with wild-type strain, indicating WalR might regulated HP1065 expression and contribute to the anti-phagocytosis of SS2. In conclusion, we identified 13 genes that influenced the phagocytosis resistant ability of SS2, and many of these genes have not been reported to be associated with resistance to phagocytosis. Our work provides novel insight into resistance to phagocytosis, and furthers our understanding of the pathogenesis mechanism of SS2.


Assuntos
Elementos de DNA Transponíveis , Genes Bacterianos , Macrófagos/microbiologia , Fagocitose , Streptococcus suis/genética , Animais , Modelos Animais de Doenças , Feminino , Biblioteca Gênica , Evasão da Resposta Imune , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Sorogrupo , Organismos Livres de Patógenos Específicos , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus suis/classificação , Streptococcus suis/imunologia , Virulência/genética
15.
BMC Vet Res ; 16(1): 129, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381017

RESUMO

BACKGROUND: Recombinant Salmonella enterica serotype Choleraesuis (S. Choleraesuis) vaccine vector could be used to deliver heterologous antigens to prevent and control pig diseases. We have previously shown that a live-attenuated S. Choleraesuis vaccine candidate strain rSC0011 (ΔPcrp527::TT araC PBADcrp Δpmi-2426 ΔrelA199::araC PBADlacI TT ΔasdA33, Δ, deletion, TT, terminator) delivering SaoA, a conserved surface protein in most of S. suis serotypes, provided excellent protection against S. suis challenge, but occasionally lead to morbidity (enteritidis) in vaccinated mice (approximately 1 in every 10 mice). Thus, alternated attenuation method was sought to reduce the reactogenicity of strain rSC0011. Herein, we described another recombinant attenuated S. Choleraesuis vector, rSC0012 (ΔPfur88:: TT araC PBADfur Δpmi-2426 ΔrelA199:: araC PBADlacI TT ΔasdA33) with regulated delayed fur mutation to avoid inducing disease symptoms while exhibiting a high degree of immunogenicity. RESULTS: The strain rSC0012 strain with the ΔPfur88::TT araC PBADfur mutation induced less production of inflammatory cytokines than strain rSC0011 with the ΔPcrp527::TT araC PBADcrp mutation in mice. When delivering the same pS-SaoA plasmid, the intraperitoneal LD50 of rSC0012 was 18.2 times higher than that of rSC0011 in 3-week-old BALB/C mice. rSC0012 with either pS-SaoA or pYA3493 was cleared from spleen and liver tissues 7 days earlier than rSC0011 with same vectors after oral inoculation. The strain rSC0012 synthesizing SaoA induced high titers of anti-SaoA antibodies in both systemic (IgG in serum) and mucosal (IgA in vaginal washes) sites, as well as increased level of IL-4, the facilitator of Th2-type T cell immune response in mice. The recombinant vaccine rSC0012(pS-SaoA) conferred high percentage of protection against S. suis or S. Choleraesuis challenge in BALB/C mice. CONCLUSIONS: The live-attenuated Salmonella enterica serotype Choleraesuis vaccine rSC0012(pS-SaoA) with regulated delayed fur mutation provides a foundation for the development of a safe and effective vaccine against S. Choleraesuis and S. suis.


Assuntos
Salmonella enterica/genética , Infecções Estreptocócicas/imunologia , Streptococcus suis/imunologia , Animais , Feminino , Camundongos Endogâmicos BALB C , Mutação , Vacinas contra Salmonella/efeitos adversos , Vacinas contra Salmonella/genética , Vacinas contra Salmonella/imunologia , Sorogrupo , Streptococcus suis/genética , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
16.
Vet Microbiol ; 243: 108653, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273000

RESUMO

Porcine circovirus type 2 (PCV-2) and Streptococcus suis (S. suis) are common pathogens in pigs. Both pathogens are associated with the porcine respiratory disease complex. Clinically, coinfection of PCV-2 and S. suis are often detected in pigs with respiratory symptoms, while interactions between the two pathogens during coinfection and the coinfection pathogenesis are poorly understood. In this study, a piglet model coinfected with PCV-2 and Streptococcus suis serotype 2 (SS2) was established; coinfection of piglets increased the contents of SS2 in blood, and piglets showed more severe pneumonia, myocarditis and arthritis. Peripheral blood mononuclear cells (PBMCs) were collected and coinfected piglets showed high expression levels of inflammatory cytokines and TLR2, TLR4, while levels of CD4, CD8 and MHC II were reduced. In addition, in order to further explore the mechanisms of coinfection induced cytokine overexpression, an in vitro model of coinfection with PCV-2 and SS2 was established using cells of the porcine monocytic line 3D4/21. Similar to the in vivo results,coinfected cells exhibited increased expression of the cytokines IL-6, IL-8, TNF-α and the receptors TLR2, TLR4, while they showed a lower expression of MHC II than cells infected with SS2 alone. Furthermore, in coinfected 3D4/21 cells, both MAPK and NF-κB signaling pathways were activated, and the increased expression of IL-8 was related to TLR4. In general, coinfection with PCV-2 and SS2 exacerbated the inflammatory response and probably impaired macrophage antigen presentation, resulting in immune dysregulation and increasing the severity of host infection.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/patogenicidade , Coinfecção/veterinária , Infecções Estreptocócicas/veterinária , Streptococcus suis/patogenicidade , Animais , Infecções por Circoviridae/imunologia , Circovirus/imunologia , Coinfecção/imunologia , Citocinas/genética , Citocinas/imunologia , Sorogrupo , Infecções Estreptocócicas/imunologia , Streptococcus suis/imunologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/virologia , Virulência
17.
Vet Microbiol ; 242: 108599, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32122603

RESUMO

Streptococcus suis is an emerging swine and human pathogen causing severe infections and sudden death. During infection, complement C3a and C5a were reported to induce immune cells towards infection and injury sites via their corresponding receptors C3aR and C5aR. However, how S. suis evade immune surveillance mediated by C3aR and C5aR remains unclear. In this study, we analyze and construct an S. suis bacterial two-hybrid prey library containing 39 LPXTG motif anchored proteins and 18 secreted proteins. Two highly possible C3aR-binding proteins: thiol-activated toxin Suilysin, putative RTX family exoprotein A gene and three highly possible C5aR-binding proteins: thiol-activated toxin Suilysin, putative 5'-nucleotidase and subtilisin-like serine protease are identified through bacterial two-hybrid assay. Far-western blot assay confirms that a cholesterol-binding cytolysin Suilysin can interact with both C3aR and C5aR. Chemotaxis assays demonstrate that recombinant and natural Suilysin can inhibit monocyte chemotaxis mediated by C3a and C5a. These findings enlarge our knowledge of suilysin biological significance and provide a new perspective on S. suis complement evasion.


Assuntos
Proteínas de Bactérias/imunologia , Quimiotaxia , Proteínas Hemolisinas/imunologia , Monócitos/imunologia , Receptor da Anafilatoxina C5a/imunologia , Receptores de Complemento/imunologia , Animais , Células Cultivadas , Humanos , Infecções Estreptocócicas/microbiologia , Streptococcus suis/química , Streptococcus suis/imunologia , Suínos/imunologia , Suínos/microbiologia , Células THP-1
18.
Vet Microbiol ; 240: 108534, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31902504

RESUMO

Streptococcus suis plays an important role in infections in pigs but information about the epidemiology of this pathogen in Poland and Belarus remains scarce. Ninety-six isolates from brain and lungs were studied by PCR-based serotyping, analysis of virulence-associated determinants and multilocus sequence typing (MLST). Selected six isolates were further analyzed by genomic sequencing and transmission electron microscopy (TEM). Serotype 2 was most prevalent, followed by serotypes 3, 4, 8 and 7. All isolates carried fbpS; 30, 74 and 79 isolates were positive for epf, mrp and sao, respectively. MLST revealed that while widely distributed clonal complexes, such as 1, 16, 25 and 28 circulate in both countries, a significant part of the population is composed of novel singletons. Six isolates, all positive for the capsule in TEM, harbored cps loci differing to a various degree from these previously described, including one with a novel cps locus (putative NCL21). In conclusion, our study provides first molecular data on S. suis from pigs in the Central/Eastern Europe and contributes to a better characterization of diversity of loci responsible for capsule production in this pathogen.


Assuntos
Loci Gênicos , Variação Genética , Infecções Estreptocócicas/veterinária , Streptococcus suis/classificação , Animais , Técnicas de Tipagem Bacteriana , Microscopia Eletrônica de Transmissão , Tipagem de Sequências Multilocus , Polônia/epidemiologia , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/ultraestrutura , Prevalência , República de Belarus/epidemiologia , Sorogrupo , Sorotipagem , Infecções Estreptocócicas/epidemiologia , Streptococcus suis/imunologia , Streptococcus suis/patogenicidade , Suínos/microbiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/microbiologia , Fatores de Virulência/genética
19.
J Microbiol Immunol Infect ; 53(2): 234-239, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29934035

RESUMO

BACKGROUND: Streptococcus suis (SS) is a major swine pathogen and a serious zoonotic pathogen causing septicemia and meningitis in piglets and humans. Using an immunoproteomic approach, we previously brought evidence that ornithine carbamoytransferase (OCT) may represent a vaccine candidate to protect against S. suis biofilm-related and acute infections. METHOD: In this study, the gene encoding OCT was cloned into the expression vector pET-28a and the recombinant protein was expressed in Escherichia coli BL21. The immunogenicity and protective efficacy of the SS OCT was further investigated in a mouse model. RESULTS: The protein was found to be expressed in vivo and elicited high antibody titers following SS infections in mice. An animal challenge experiment with SS showed that 62.5% of mice immunized with the OCT protein were protected. Using an in vitro competitive adherence inhibition assay of adherence, evidence was obtained that OCT could significantly reduce the number of SS cells adhered to porcine kidney PK-15 cells. The bacterial levels recovered in mice of the OCT immunized group were significantly decreased in some organs, compared with the control group. CONCLUSION: In summary, our results suggest that the recombinant SS OCT protein, which is involved in bacterial adherence, may efficiently stimulate an immune response conferring protection against SS infections. It may therefore be considered as a potential vaccine candidate, although further studies are necessary to evaluate their use in swine.


Assuntos
Aderência Bacteriana/fisiologia , Ornitina Carbamoiltransferase/imunologia , Ornitina Carbamoiltransferase/isolamento & purificação , Infecções Estreptocócicas/imunologia , Streptococcus suis/enzimologia , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/genética , Vacinas Bacterianas/imunologia , Biofilmes , Modelos Animais de Doenças , Escherichia coli/genética , Imunização , Camundongos , Ornitina/metabolismo , Ornitina Carbamoiltransferase/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Streptococcus suis/genética , Streptococcus suis/imunologia
20.
Front Immunol ; 11: 585399, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33603733

RESUMO

Streptococcus suis serotype 2 (SS2), an important zoonotic pathogen that causes septicemia, arthritis, and irreversible meningitis in pigs and humans, can be transmitted to humans from pigs. S. suis causes huge economic losses to the swine industry and poses a serious threat to public health. Previously, we found that the brain tissues of mice with SS2-induced meningitis showed disrupted structural integrity and significantly enhanced polymorphonuclear neutrophil (PMN) infiltration. We showed that the brain tissues of SS2-infected mice had increased ribosomal protein SA (RPSA)-positive PMN counts. However, the inflammatory responses of RPSA+ PMNs to SS2 and their effects on the blood-brain barrier (BBB) remain unclear. Therefore, in studying the pathogenesis of SS2-induced meningitis, it is essential that we explore the functions of RPSA+ PMNs and their effects on the BBB. Herein, using flow cytometry and immunofluorescence microscopy analyses, we found that RPSA expression enhances PMN-induced phagocytosis and PMN-induced formation of neutrophil extracellular traps (NETs), which facilitate further elimination of bacteria. PMN surface expression of RPSA also alleviates local inflammation and tissue injuries by inhibiting secretion of the pro-inflammatory cytokines, TNF-α and IL-6. Moreover, the single-cell BBB model showed that RPSA disrupts BBB integrity by downregulating expression of tight junction-associated membrane proteins on PMNs. Taken together, our data suggest that PMN-surface expression of RPSA is a double-edged sword. RPSA+ PMN owns a stronger ability of bacterial cleaning and weakens inflammatory cytokines release which are useful to anti-infection, but does hurt BBB. Partly, RPSA+ PMN may be extremely useful to control the infection as a therapeutic cellular population, following novel insights into the special PMN population.


Assuntos
Armadilhas Extracelulares/imunologia , Meningite Pneumocócica/imunologia , Neutrófilos/imunologia , Fagocitose/imunologia , Receptores de Laminina/imunologia , Proteínas Ribossômicas/imunologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Citocinas/imunologia , Meningite Pneumocócica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Receptores de Laminina/metabolismo , Proteínas Ribossômicas/metabolismo , Streptococcus suis/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...